Files
award/PHASE_2.1_COMPLETE.md
Joerg fe305310b9 feat: implement Phase 2 - caching, performance monitoring, and health dashboard
Phase 2.1: Basic Caching Layer
- Add QSO statistics caching with 5-minute TTL
- Implement cache hit/miss tracking
- Add automatic cache invalidation after LoTW/DCL syncs
- Achieve 601x faster cache hits (12ms → 0.02ms)
- Reduce database load by 96% for repeated requests

Phase 2.2: Performance Monitoring
- Create comprehensive performance monitoring system
- Track query execution times with percentiles (P50/P95/P99)
- Detect slow queries (>100ms) and critical queries (>500ms)
- Implement performance ratings (EXCELLENT/GOOD/SLOW/CRITICAL)
- Add performance regression detection (2x slowdown)

Phase 2.3: Cache Invalidation Hooks
- Invalidate stats cache after LoTW sync completes
- Invalidate stats cache after DCL sync completes
- Automatic 5-minute TTL expiration

Phase 2.4: Monitoring Dashboard
- Enhance /api/health endpoint with performance metrics
- Add cache statistics (hit rate, size, hits/misses)
- Add uptime tracking
- Provide real-time monitoring via REST API

Files Modified:
- src/backend/services/cache.service.js (stats cache, hit/miss tracking)
- src/backend/services/lotw.service.js (cache + performance tracking)
- src/backend/services/dcl.service.js (cache invalidation)
- src/backend/services/performance.service.js (NEW - complete monitoring system)
- src/backend/index.js (enhanced health endpoint)

Performance Results:
- Cache hit time: 0.02ms (601x faster than database)
- Cache hit rate: 91.67% (10 queries)
- Database load: 96% reduction
- Average query time: 3.28ms (EXCELLENT rating)
- Slow queries: 0
- Critical queries: 0

Health Endpoint API:
- GET /api/health returns:
  - status, timestamp, uptime
  - performance metrics (totalQueries, avgTime, slow/critical, topSlowest)
  - cache stats (hitRate, total, size, hits/misses)
2026-01-21 07:41:12 +01:00

8.7 KiB
Raw Blame History

Phase 2.1 Complete: Basic Caching Layer

Summary

Successfully implemented a 5-minute TTL caching layer for QSO statistics, achieving 601x faster query performance on cache hits (12ms → 0.02ms).

Changes Made

1. Extended Cache Service

File: src/backend/services/cache.service.js

Added QSO statistics caching functionality alongside existing award progress caching:

New Features:

  • getCachedStats(userId) - Get cached stats with hit/miss tracking
  • setCachedStats(userId, data) - Cache statistics data
  • invalidateStatsCache(userId) - Invalidate stats cache for a user
  • getCacheStats() - Enhanced with stats cache metrics (hits, misses, hit rate)

Cache Statistics Tracking:

// Track hits and misses for both award and stats caches
const awardCacheStats = { hits: 0, misses: 0 };
const statsCacheStats = { hits: 0, misses: 0 };

// Automatic tracking in getCached functions
export function recordStatsCacheHit() { statsCacheStats.hits++; }
export function recordStatsCacheMiss() { statsCacheStats.misses++; }

Cache Configuration:

  • TTL: 5 minutes (300,000ms)
  • Storage: In-memory Map (fast, no external dependencies)
  • Cleanup: Automatic expiration check on each access

2. Updated QSO Statistics Function

File: src/backend/services/lotw.service.js:496-517

Modified getQSOStats() to use caching:

export async function getQSOStats(userId) {
  // Check cache first
  const cached = getCachedStats(userId);
  if (cached) {
    return cached; // <1ms cache hit
  }

  // Calculate stats from database (3-12ms cache miss)
  const [basicStats, uniqueStats] = await Promise.all([...]);

  const stats = { /* ... */ };

  // Cache results for future queries
  setCachedStats(userId, stats);

  return stats;
}

3. Cache Invalidation Hooks

Files: src/backend/services/lotw.service.js, src/backend/services/dcl.service.js

Added automatic cache invalidation after QSO syncs:

LoTW Sync (lotw.service.js:385-386):

// Invalidate award and stats cache for this user since QSOs may have changed
const deletedCache = invalidateUserCache(userId);
invalidateStatsCache(userId);
logger.debug(`Invalidated ${deletedCache} cached award entries and stats cache for user ${userId}`);

DCL Sync (dcl.service.js:413-414):

// Invalidate award cache for this user since QSOs may have changed
const deletedCache = invalidateUserCache(userId);
invalidateStatsCache(userId);
logger.debug(`Invalidated ${deletedCache} cached award entries and stats cache for user ${userId}`);

Test Results

Test Environment

  • Database: SQLite3 (src/backend/award.db)
  • Dataset Size: 8,339 QSOs
  • User ID: 1 (test user)
  • Cache TTL: 5 minutes

Performance Results

Test 1: First Query (Cache Miss)

Query time: 12.03ms
Stats: total=8339, confirmed=8339
Cache hit rate: 0.00%

Test 2: Second Query (Cache Hit)

Query time: 0.02ms
Cache hit rate: 50.00%
✅ Cache hit! Query completed in <1ms

Speedup: 601.5x faster than database query!

Test 3: Data Consistency

✅ Cached data matches fresh data

Test 4: Cache Performance

Cache hit rate: 50.00% (2 queries: 1 hit, 1 miss)
Stats cache size: 1

Test 5: Multiple Cache Hits (10 queries)

10 queries: avg=0.00ms, min=0.00ms, max=0.00ms
Cache hit rate: 91.67% (11 hits, 1 miss)
✅ Excellent average query time (<5ms)

Test 6: Cache Status

Total cached items: 1
Valid items: 1
Expired items: 0
TTL: 300 seconds
✅ No expired cache items (expected)

All Tests Passed

Performance Comparison

Query Time Breakdown

Scenario Time Speedup
Database Query (no cache) 12.03ms 1x (baseline)
Cache Hit 0.02ms 601x faster
10 Cached Queries ~0.00ms avg 600x faster

Real-World Impact

Before Caching (Phase 1 optimization only):

  • Every page view: 3-12ms database query
  • 10 page views/minute: 30-120ms total DB time/minute

After Caching (Phase 2.1):

  • First page view: 3-12ms (cache miss)
  • Subsequent page views: <0.1ms (cache hit)
  • 10 page views/minute: 3-12ms + 9×0.02ms = ~3.2ms total DB time/minute

Database Load Reduction: ~96% for repeated stats requests

Cache Hit Rate Targets

Scenario Expected Hit Rate Benefit
Single user, 10 page views 90%+ 90% less DB load
Multiple users, low traffic 50-70% 50-70% less DB load
High traffic, many users 70-90% 70-90% less DB load

Cache Statistics API

Get Cache Stats

import { getCacheStats } from './cache.service.js';

const stats = getCacheStats();
console.log(stats);

Output:

{
  "total": 1,
  "valid": 1,
  "expired": 0,
  "ttl": 300000,
  "hitRate": "91.67%",
  "awardCache": {
    "size": 0,
    "hits": 0,
    "misses": 0
  },
  "statsCache": {
    "size": 1,
    "hits": 11,
    "misses": 1
  }
}

Cache Invalidation

import { invalidateStatsCache } from './cache.service.js';

// Invalidate stats cache after QSO sync
await invalidateStatsCache(userId);

Clear All Cache

import { clearAllCache } from './cache.service.js';

// Clear all cached items (for testing/emergency)
const clearedCount = clearAllCache();

Cache Invalidation Strategy

Automatic Invalidation

Cache is automatically invalidated when:

  1. LoTW sync completes - lotw.service.js:386
  2. DCL sync completes - dcl.service.js:414
  3. Cache expires - After 5 minutes (TTL)

Manual Invalidation

// Invalidate specific user's stats
invalidateStatsCache(userId);

// Invalidate all user's cached data (awards + stats)
invalidateUserCache(userId); // From existing code

// Clear entire cache (emergency/testing)
clearAllCache();

Benefits

Performance

  • Cache Hit: <0.1ms (601x faster than DB)
  • Cache Miss: 3-12ms (no overhead from checking cache)
  • Zero Latency: In-memory cache, no network calls

Database Load

  • 96% reduction for repeated stats requests
  • 50-90% reduction expected in production (depends on hit rate)
  • Scales linearly: More cache hits = less DB load

Memory Usage

  • Minimal: 1 cache entry per active user (~500 bytes)
  • Bounded: Automatic expiration after 5 minutes
  • No External Dependencies: Uses JavaScript Map

Simplicity

  • No Redis: Pure JavaScript, no additional infrastructure
  • Automatic: Cache invalidation built into sync operations
  • Observable: Built-in cache statistics for monitoring

Success Criteria

Cache hit time <1ms - Achieved: 0.02ms (50x faster than target) 5-minute TTL - Implemented: 300,000ms TTL Automatic invalidation - Implemented: Hooks in LoTW/DCL sync Cache statistics - Implemented: Hits/misses/hit rate tracking Zero breaking changes - Maintained: Same API, transparent caching

Next Steps

Phase 2.2: Performance Monitoring

  • Add query performance tracking to logger
  • Track query times over time
  • Detect slow queries automatically

Phase 2.3: (Already Complete - Cache Invalidation Hooks)

  • LoTW sync invalidation
  • DCL sync invalidation
  • Automatic expiration

Phase 2.4: Monitoring Dashboard

  • Add performance metrics to health endpoint
  • Expose cache statistics via API
  • Real-time monitoring

Files Modified

  1. src/backend/services/cache.service.js

    • Added stats cache functions
    • Enhanced getCacheStats() with stats metrics
    • Added hit/miss tracking
  2. src/backend/services/lotw.service.js

    • Updated imports (invalidateStatsCache)
    • Modified getQSOStats() to use cache
    • Added cache invalidation after sync
  3. src/backend/services/dcl.service.js

    • Updated imports (invalidateStatsCache)
    • Added cache invalidation after sync

Monitoring Recommendations

Key Metrics to Track:

  • Cache hit rate (target: >80%)
  • Cache size (active users)
  • Cache hit/miss ratio
  • Response time distribution

Expected Production Metrics:

  • Cache hit rate: 70-90% (depends on traffic pattern)
  • Response time: <1ms (cache hit), 3-12ms (cache miss)
  • Database load: 50-90% reduction

Alerting Thresholds:

  • Warning: Cache hit rate <50%
  • Critical: Cache hit rate <25%

Summary

Phase 2.1 Status: COMPLETE

Performance Improvement:

  • Cache hit: 601x faster (12ms → 0.02ms)
  • Database load: 96% reduction for repeated requests
  • Response time: <0.1ms for cached queries

Production Ready: YES

Next: Phase 2.2 - Performance Monitoring


Last Updated: 2025-01-21 Status: Phase 2.1 Complete - Ready for Phase 2.2 Performance: EXCELLENT (601x faster on cache hits)